Ядерный Магнитный Резонанс Реферат

      Комментарии к записи Ядерный Магнитный Резонанс Реферат отключены

Ядерный Магнитный Резонанс Реферат.rar
Закачек 856
Средняя скорость 1659 Kb/s

Сущность, понятие ядерного магнитного резонанса, история его возникновения и основатели. Особенности ларморовской частоты некоторых атомных ядер, специфика химической поляризации. Применение ядерного магнитного резонанса, процесс импульсной спектроскопии.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Национальный технический университет

Харьковский политехнический институт

Реферат по экологии

На тему: «Ядерно-магнитный резонанс»

Выполнил:Евлахов Д. Е.

Химическая Поляризация Ядер

Ямдерный магнимтный резонамнс (ЯМР) — резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте н (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер.

Явление ядерного магнитного резонанса было открыто в 1938 году Исидором Раби в молекулярных пучках, за что он был удостоен Нобелевской премии 1944 года ] . В 1946 году Феликс Блох и Эдвард Миллз Парселлполучили ядерный магнитный резонанс в жидкостях и твёрдых телах (нобелевская премия 1952 года).

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих изнуклонов с полуцелым спином 1/2, 3/2, 5/2…. Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом, в то время как для всех прочих ядер магнитный момент отличен от нуля.

Ядра обладают угловым моментом , связанным с магнитным моментом соотношением

где — постоянная Планка, — спиновое квантовое число, — гиромагнитное отношение.

Угловой момент и магнитный момент ядра квантованы, и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением

где — магнитное квантовое число собственного состояния ядра, его значения определяются спиновым квантовым числом ядра

то есть ядро может находиться в состояниях.

Так, у протона (или другого ядра с I = 1/2 — 13 C, 19 F, 31 P и т. п.) может находиться только в двух состояниях

такое ядро можно представить как магнитный диполь, z-компонента которого может быть ориентирована параллельно либо антипараллельно положительному направлению оси z произвольной системы координат.

Следует отметить, что в отсутствие внешнего магнитного поля все состояния с различными имеют одинаковую энергию, то есть являются вырожденными. Вырождение снимается во внешнем магнитном поле, при этом расщепление относительно вырожденного состояния пропорционально величине внешнего магнитного поля и магнитного момента состояния и для ядра со спиновым квантовым числом I во внешнем магнитном поле появляется система из 2I+1 энергетических уровней , то есть ядерный магнитный резонанс имеет ту же природу, что и эффект Зеемана расщепления электронных уровней в магнитном поле.

В простейшем случае для ядра со спином с I = 1/2 — например, для протона, расщепление

и разность энергии спиновых состояний

Химическая Поляризация Ядер

При протекании некоторых химических реакций в магнитном поле в спектрах ЯМР продуктов реакции обнаруживается либо аномально большое поглощение, либо радиоизлучение. Этот факт свидетельствует о неравновесном заселении ядерных зеемановских уровней в молекулах продуктов реакции. Избыточная заселённость нижнего уровня сопровождается аномальным поглощением. Инверсная заселённость (верхний уровень заселён больше нижнего) приводит к радиоизлучению. Данное явление называется химической поляризацией ядер.

Ларморовские частоты некоторых атомных ядер

Ларморовская частота в МГц при 0,5 Тесла

Ларморовская частота в МГц при 1 Тесла

Ларморовская частота в МГц при 7,05 Тесла

Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м

Сердцем спектрометра ЯМР является мощный магнит. В эксперименте, впервые осуществленном на практике Парселлом, образец, помещенный в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле, действующее на неё, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности. Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте чуть меньшей, чем ядра, лишенные электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его ещё называют методом непрерывного облучения (CW, continous wave). ядерный магнитный резонанс импульсный

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от н0. Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт.

В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер — так называемый «спад свободной индукции» (FID, free induction decay). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование, по которому любая функция может быть представлена в виде суммы множества гармонических колебаний.

Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

· сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра;

· интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;

· ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1 Н и 13 С применяют тетраметилсилан Si(CH3)4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу д. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой ф, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчёта констант экранирования и на их основании соотнести сигналы.

Спектр 1H 4-этоксибензальдегида. В слабом поле (синглет

9,25 м д.) сигнал протона альдегидной группы, в сильном (триплет

1,85-2 м д.) — протонов метила этоксильной группы.

Реферат на тему

Ядерный магнитный резонанс (ЯМР)

Явление магнитного резонанса используется для обнаружения и измерения электрических и магнитных взаимодействий электронов и ядер в макроскопических количествах вещества. Это явление обусловлено парамагнитной ориентацией электронного и ядерного токов внешним полем и их ларморовской прецессией относительно направления внешнего поля. Частота ларморовской прецессии пропорциональна напряженности магнитного поля, приложенного в области нахождения прецессирующего электрона или ядра. Когда соседние частицы дают вклад в локальное магнитное поле, он измеряется по сдвигу частоты прецессии. Дополнительный сдвиг частоты прецессии может произойти также за счет неоднородных электрических полей, создаваемых соседними частицами.

Ларморовская прецессия

Эксперименты, в которых прослеживается отклик атомов на магнитное поле, дают ключевую информацию об атомной механике. Ларморовская прецессия атомов и других частиц в магнитном поле состоит в том, что средний магнитный момент атомов периодически изменяет направление. Описание этого изменения служит прототипом описания нестационарных состояний атомных систем. Изучая нестационарные состояния, мы прослеживаем развитие атомных явлений во времени, тогда как при изучении стационарных состояний мы сосредотачиваемся на свойствах, остающихся неизменными.

Механическим аналогом Ларморовской прецессии служит вращающийся волчок.

Рис. 1. Прецессия вращающегося волчка. J – момент импульса, Р – сила тяжести, R – реакция опоры, М – вращающий момент.

Действие вращающего момента, например на атом газа, приводит к гироскопическому эффекту, при котором инерция атома проявляется как момент импульса. Иными словами, воздействие внешнего постоянного магнитного поля B на атомный контур с током аналогично воздействию силы тяжести на вращающийся волчок и описывается аналогичным уравнением. Вращающий момент М волчка стремится опустить его центр масс, поворачивая ось вращения относительно точки опоры. В случае атома с кольцевым током вращающий момент М, определяемый равенством M=[μ·B], стремится повернуть атом вокруг его центра масс. В обоих случаях воздействие вращающего момента изменяет момент импульса J, обусловленный вращением волчка или циркуляцией носителей тока в атоме. Уравнение движения имеет вид:

Векторная добавка dJ/dt к мгновенному значению момента импульса J вызывает прецессию его направления относительно оси, вертикальной в случае волчка и параллельной вектору индукции внешнего магнитного поля B в случае атома. В ходе прецессии угол между J и осью прецессии остается постоянным. Угловая скорость прецессии обычно описывается вектором ω, параллельным этой оси:

Таким образом, мы видим, что атомы могут прецессировать вокруг направления приложенного внешнего магнитного поля.

Схема установки

Схема экспериментальной установки изображена на рис.2.

Рис. 2. Схематическое изображение установки для эксперимента по магнитному резонансу. Резонанс достигается в радиочастотном диапазоне. Катушка (а) и резонатор (б) присоединяются к источникам переменного поля и измерителям потери мощности.

Исследуемый образец помещается внутрь радиочастотной катушки или микроволнового резонатора, расположенных между полюсами магнита. Крайне высокая точность настройки установки и ее чувствительность при определении поглощаемой мощности – главное преимущество метода магнитного резонанса. В стандартной экспериментальной методике частота колебаний ω поперечного поля поддерживается постоянной и резонанс достигается с помощью изменения напряженности поля B0, что приводит к медленному изменению частоты прецессии γB0. На экране осциллографа при этом можно наблюдать компоненту M, колеблющуюся либо в противофазе с управляющим поперечным полем В1cosωt (т.е. поглощаемую мощность), либо в фазе с ним (рис.3).

Рис. 3. Сигналы магнитного резонанса протона в жидком водороде а) Потеря мощности, б) Компонента М, находящаяся в фазе с поперечным полем.

Магнитный резонанс наблюдается по изменению магнитного момента M образца вещества, помещенного во внешнее поле. Вектор M равен сумме средних моментов всех атомных систем, составляющих данный образец, обычно наблюдаемые изменения вектора M обусловлены прецессией моментов отдельных составляющих, например ядер атомов водорода.

Средний магнитный момент атомной системы, возникающий в результате парамагнитной ориентации, обычно параллелен локальному полю B0, которое мы считаем постоянным. Следовательно, если момент не отклоняется от направления B0 каким-либо возмущающим полем, то он не прецессирует вокруг B0. При отклонении момента возникает прецессия с частотой γB0, гиромагнитное отношение γ предполагается известным из других экспериментов. Отклонение происходит при наложении переменного поперечного поля напряженности B1cosωt, если ω совпадает с частотой прецессии γB0. Такое совпадение частот и обеспечивает возникновение магнитного резонанса. Появление прецессии наблюдается чаще всего по поглощению энергии переменного поперечного поля. Эксперименты по магнитному резонансу позволяют найти распределение поля в веществе в местах расположения токов, для которых наблюдается этот резонанс. Например, в типичном эксперименте по обнаружению резонанса спиновых токов в органических веществах определяются напряженности магнитного поля в местах нахождения различных атомов водорода. Если напряженности Bi, поля в разных точках образца одинаковы, резонанс наблюдается на одной частоте, которая равна ω при Bi=B0 и отличается от нее на постоянную величину в противном случае. Изменение величины внутреннего поля от точки к точке приводит к возникновению резонанса на разных частотах.

Список литературы

Фано У., Фано Л. Физика атомов и молекул. Пер. с англ. / Под ред. Л.И. Пономарева. – М.: Наука, 1980.

Физика микромира. Маленькая энциклопедия. [Гл. ред. Д.В. Ширков]. – М.: «Сов. энциклопедия», 1980.

Я́дерный магни́тный резона́нс (ЯМР) — резонансное поглощение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, обусловленное переориентацией магнитных моментов ядер.

Явление магнитного резонанса было открыто в 1945—1946 гг. двумя независимыми группами ученых. Вдохновителями этого открытия были Ф. Блох и Э. Пёрселл [1] [2] .

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

1. Физика ЯМР

В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих из нуклонов с полуцелым спином 1/2, 3/2, 5/2…. Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом, в то время как для всех прочих ядер магнитный момент отличен от нуля.

Таким образом, ядра обладают угловым моментом , связанным с магнитным моментом соотношением

где — постоянная Планка, — спиновое квантовое число, — гиромагнитное отношение.

Угловой момент и магнитный момент ядра квантованы, и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением

где — магнитное квантовое число собственного состояния ядра, его значения определяются спиновым квантовым числом ядра

то есть ядро может находиться в состояниях.

Так, у протона (или другого ядра с I = 1/2 — 13 C, 19 F, 31 P и т. п.) может находиться только в двух состояниях

такое ядро можно представить как магнитный диполь, z-компонента которого может быть ориентирована параллельно либо антипараллельно положительному направлению оси z произвольной системы координат.

Следует отметить, что в отсутствие внешнего магнитного поля все состояния с различными имеют одинаковую энергию, то есть являются вырожденными. Вырождение снимается во внешнем магнитном поле, при этом расщепление относительно вырожденного состояния пропорционально величине внешнего магнитного поля и магнитного момента состояния и для ядра со спиновым квантовым числом I во внешнем магнитном поле появляется система из 2I+1 энергетических уровней , то есть ядерный магнитный резонанс имеет ту же природу, что и эффект Зеемана расщепления электронных уровней в магнитном поле.

В простейшем случае для ядра со спином с I = 1/2 — например, для протона, расщепление

и разность энергии спиновых состояний

2. Химическая поляризация ядер

При протекании некоторых химических реакций в магнитном поле в спектрах ЯМР продуктов реакции обнаруживается либо аномально большое поглощение, либо радиоизлучение. Этот факт свидетельствует о неравновесном заселении ядерных зеемановских уровней в молекулах продуктов реакции. Избыточная заселённость нижнего уровня сопровождается аномальным поглощением. Инверсная заселённость (верхний уровень заселён больше нижнего) приводит к радиоизлучению. Данное явление называется химической поляризацией ядер.

2.1. Ларморовские частоты некоторых атомных ядер

Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м) [3] .

3. Применение ЯМР

3.1. Спектроскопия

Сердцем спектрометра ЯМР является мощный магнит. В эксперименте, впервые осуществленном на практике Пёрселлом, образец, помещенный в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле, действующее на нее, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности. Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте чуть меньшей, чем ядра, лишенные электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его еще называют методом непрерывного облучения (CW, continous wave).

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν0. Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт.

В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер — так называемый «спад свободной индукции» (FID, free induction decay ). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование, по которому любая функция может быть представлена в виде суммы множества гармонических колебаний.

3.1.2. Спектры ЯМР

9,25 м.д) сигнал протона альдегидной группы, в сильном (триплет

1,85-2 м.д.) — протонов метила этоксильной группы.

Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

  • сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра;
  • интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;
  • ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1 Н и 13 С применяют тетраметилсилан Si(CH3)4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчета констант экранирования и на их основании соотнести сигналы.

3.2. ЯМР-интроскопия

Явление ядерного магнитного резонанса можно применять не только в физике и химии, но и в медицине: организм человека — это совокупность все тех же органических и неорганических молекул.

Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютерная обработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) состоит, по сути дела, в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В обычной ЯМР-спектроскопии стремятся реализовать, по возможности, наилучшее разрешение спектральных линий. Для этого магнитные системы регулируются таким образом, чтобы в пределах образца создать как можно лучшую однородность поля. В методах ЯМР-интроскопии, напротив, магнитное поле создается заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет свое собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (томограмму) срезов внутренней структуры объекта.

ЯМР-интроскопия, ЯМР-томография впервые в мире изобретены в 1960 г. В. А. Ивановым. [4] [5] Заявку на изобретение (способ и устройство) некомпетентный эксперт отклонил «… ввиду явной бесполезности предлагаемого решения», поэтому авторское свидетельство на это было выдано лишь более чем через 10 лет. Таким образом, официально признано, что автором ЯМР-томографии является не коллектив нижеуказанных нобелевских лауреатов, а российский учёный. Невзирая на этот юридический факт, Нобелевская премия была присуждена за ЯМР-томографию вовсе не В. А. Иванову.

4. Нобелевские премии

Нобелевская премия по физике за 1952 г. была присуждена Феликсу Блоху и Эдварду Миллс Пёрселлу «За развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия».

Нобелевская премия по химии за 1991 г. была присуждена Ричарду Эрнсту «За вклад в развитие методологии ядерной магнитной резонансной спектроскопии высокого разрешения».

Нобелевская премия по химии за 2002 г. (1/2 часть) была присуждена Курту Вютриху «За разработку применения ЯМР-спектроскопии для определения трехмерной структуры биологических макромолекул в растворе».

Нобелевская премия по физиологии и медицине за 2003 г. была присуждена Полу Лотербуру, Питеру Мэнсфилду «За изобретение метода магнитно-резонансной томографии».


Статьи по теме