Виноградов Олехник Садовничий Решебник

      Комментарии к записи Виноградов Олехник Садовничий Решебник отключены

Виноградов Олехник Садовничий Решебник.rar
Закачек 2908
Средняя скорость 8312 Kb/s

Задачи и упражнения по математическому анализу/ И. А. Виноградова, С. Н. Олехник, В. А. Садовничий. Под общ. ред. В. А. Садовничего. — М.: Изд-во Моск. ун-та, 1988. — 416с.

Учебное пособие соответствует программе 1-го курса для студентов-математиков и отражает опыт преподавания математического анализа на механико-математическом факультете МГУ. Большая часть задач отлична от содержащихся в известном задачнике Б. П. Демидовича.

Формат: djvu / zip

Скачать / Download файл

Предисловие . . 3
Часть I. Графики, пределы, дифференциальное исчисление функции одной переменной . . . 4
Глава I. Построение эскизов графиков функций 4
§ 1. Элементарные преобразования графиков 4-
§ 2. Графики рациональных функций 14
§ 3. Графики алгебраических функций 16
§ 4. Обратные тригонометрические функции и их графики . 20
§ 5. Кривые, заданные параметрически 25
§ 6. Полярная система координат и уравнения кривых в этой системе 29
§ 7. Функции, заданные неявно 31
Задачи . . . 34
Глава II. Вычисление пределов 48
§ 1. Предел функции 48
§ 2. Предел последовательности 67
§ 3. Вычисление пределов с помощью формулы Тейлора . 70
Задачи . . . 77
Ответы 87
Глава III. Дифференциальное исчисление функций одного действительного переменного . . 89
§ 1. Вычисление производных 89
§ 2. Дифференциал функции и инвариантность его формы . 101
§ 3. Приложения дифференциального исчисления 10З
Касательные и нормали к кривым 10З
Возрастание и убывание функции 110
Формула Тейлора, правило Лопиталя 113
Исследование функций и построение кривых 117
Задачи . . . 122
Ответы . . . 133
Глава IV. Теоретические задачи . 144
§ 1. Общие свойства числовых множеств на прямой 144
§ 2. Последовательности и их свойства 148
§ 3. Функции. Общие свойства . 152
§ 4. Предел и непрерывность функций 154
§ 5. Дифференцируемость функций . 159
Ответы, решения, указания 162
Часть II . Неопределенный и определенный интегралы. Дифференциальное исчисление функций многих переменных 174
Глава I. Неопределенный интеграл 174
§ 1. Первообразная и простейшие способы ее нахождения . . . 174
Задачи 177
§ 2. Интегрирование по частям 180
Задачи . . . 181
§ 3. Замена переменного 182
§ 4. Простейшие интегралы, содержащие квадратный трехчлен . . 190
Задачи . . . 193
§ 5. Интегрирование рациональных дробей 194
Задачи 203
§ 6. Интегрирование некоторых тригонометрических функций . . 204
Задачи 208
§ 7. Интегрирование выражений, содержащих радикалы . 209
Задачи 218
§ 8. Задачи на различные методы интегрирования 219
Ответы 223
Глава II. Определенный интеграл Римана 236
§ 1. Вычисление определенного интеграла. Понятие несобственного интеграла 236
§ 2. Площадь плоской области 246
§ 3. Объем тела вращения . 254
§ 4. Длина дуги кривой 265
§ 5. Площадь поверхности вращения 270
Задачи . . . 276
Ответы 283
Глава III. Дифференциальное исчисление функций многих переменных 286
§ 1. Предел и непрерывность 286
§ 2. Производная, первый дифференциал, частные производные . . 291
§ 3. Дифференцирование сложных функций 300
§ 4. Производные высших порядков. Второй дифференциал . . . 303
§ 5. Дифференцирование неявных функций 310
§ 6. Замена переменных . 320
§ 7. Геометрические приложения 329
§ 8. Экстремумы функций многих переменных 336
Задачи . 351
Ответы 369
Глава IV. Теоретические задачи 381
§ I. Первообразная и определенный интеграл Римана . 381
Ответы и указания . 391
§ 2. Функции многих переменных 401
Ответы и указания . 408

Математический анализ в задачах и упражнениях: Учеб. пособие. Виноградова И. А., Олехник С. Н., Садовничий В. А. — М.: Изд-во Моск. ун-та, 1991. — 352 с.

Пособие составлено на материале занятий по курсу математического анализа на II курсе механико-математического факультета МГУ и отражает опыт преподавания кафедры математического анализа. Перед задачами приводятся развернутые методические указания. В них даны все используемые в данном параграфе определения, формулировки основных теорем, вывод некоторых соотношений, приведены подробные решения характерных задач, обращено внимание на часто встречающиеся ошибки. Содержание задач и упражнений согласовано с теоретическим курсом математического анализа. Большая часть задач и упражнений отлична от задач, содержащихся в известном задачнике Б. П. Демидовича.

Для студентов математических специальностей университетов и педвузов и студентов технических вузов с углубленным изучением математического анализа.

Формат: djvu / zip

Скачать / Download файл

Предисловие 4
Глава I. Интегральное исчисление функций многих переменных . 5
§ 1. Определение и общие свойства интеграла от функции f : Rn

-R
§ 2. Двойной интеграл. Его геометрические и механические приложения 20
1. Теорема Фубини 20
2. Замена переменных в двойном интеграле. Переход к полярной и обобщенной полярной системам координат 43
3. Площадь поверхности и ее вычисление 58
4. Площадь плоской фигуры и объем пространственного тела . 67
5. Механические приложения двойного интеграла 71
§ 3. Тройной интеграл. Его геометрические и механические приложения 75
1. Общие свойства. Теорема Фубини 75
2. Замена переменных. Переход к цилиндрическим, сферическим и обобщенным сферическим координатам 90
3. Объем тела 103
4. Механические приложения тройного интеграла 108
§ 4. Несобственный кратный интеграл 113
Задачи 127
Ответы 157
Глава II. Криволинейный и поверхностный интегралы первого рода . . 184
§ 1. Криволинейный интеграл первого рода 184
§ 2. Поверхностный интеграл первого рода 198
Задачи 205
Ответы 216
Глава III . Криволинейный и поверхностный интегралы второго рода. Векторный анализ 220
§ 1. Ориентация кусочно-гладкой кривой LcR3 и кусочно-гладкой поверхности SczRi 220
§ 2. Дифференциальные формы в курсе анализа. Интегрирование дифференциальных форм. Общие сведения 229
§ 3. Криволинейный интеграл второго рода 247
§ 4. Поверхностный интеграл второго рода 255
§ 5. Векторный анализ 263
§ 2*. Криволинейный интеграл второго рода 278
§ 3*. Поверхностный интеграл второго рода 289
§ 4*. Векторный анализ 301
Задачи 319
Ответы 337
Теоретические задачи 340

О том, как читать книги в форматах pdf , djvu — см. раздел » Программы; архиваторы; форматы pdf, djvu и др. «

Виноградова И.А., Олехник С.Н., Садовничий В.А. Математический анализ в задачах и упражнениях (часть 2). – М.: Изд-во Моск. ун-та, 1991. -352 с.
Пособие составлено на материале занятий по курсу математического анализа на II курсе механико-математического факультета МГУ и отражает опыт преподавания кафедры математического анализа. Перед задачами приводятся развернутые методические указания. В них даны все используемые в данном параграфе определения, формулировки основных теорем, вывод некоторых соотношений, приведены подробные решения характерных задач, обращено внимание на часто встречающиеся ошибки.

Your browser does not seem to support iframes. Click here to read this PDF.

Задачи и упражнения по математическому анализу (часть1)

Учебное пособие соответствует программе 1-го курса для студентов-математиков и отражает опыт преподавания математического анализа на механико-математическом факультете МГУ. Большая часть задач отлична от содержащихся в известном задачнике Б. П. Демидовича.

Математический анализ в задачах и упражнениях (часть 2).

Пособие составлено па материале занятий по курсу математического анализа на II курсе механико-математического факультета МГУ и отражает опыт преподавания кафедры математического анализа. Перед задачами приводятся развернутые методические указания. В них даны все используемые в данном параграфе определения, формулировки основных теорем, вывод некоторых соотношений, приведены подробные решения характерных задач, обращено внимание на часто встречающиеся ошибки. Содержание задач и упражнений согласовано с теоретическим курсом математического анализа. Большая часть задач и упражнений отлична от задач, содержащихся в известном задачнике Б. П. Демидовича.

Для студентов математических специальностей университетов и педвузов и студентов технических вузов с углубленным изучением математического анализа.


Статьи по теме