Методы Решения Систем Линейных Неравенств Курсовая

      Комментарии к записи Методы Решения Систем Линейных Неравенств Курсовая отключены

Методы Решения Систем Линейных Неравенств Курсовая.rar
Закачек 1069
Средняя скорость 8807 Kb/s

Дата создания: 20.05.2002

Размер: 109.21 KB

ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РФ

Кафедра математики и финансовых приложений

Курсовая работа

«Методы решения систем линейных неравенств»

Выполнил студент группы МЭК 1-2

Чанкин Пётр Алексеевич

Профессор Александр Самуилович Солодовников

Графический метод 3

Метод искусственного базиса 8

Принцип двойственности 10

Список использованной литературы 12

Отдельные свойства систем линейных неравенств рассматривались еще в первой половине 19 века в связи с некоторыми задачами аналитической механики. Систематическое же изучение систем линейных неравенств началось в самом конце 19 века, однако о теории линейных неравенств стало возможным говорить лишь в конце двадцатых годов 20 века, когда уже накопилось достаточное количество связанных с ними результатов.

Сейчас теория конечных систем линейных неравенств может рассматриваться как ветвь линейной алгебры, выросшая из неё при дополнительном требовании упорядоченности поля коэффициентов.

Линейные неравенства имеют особо важное значение для экономистов, т.к именно при помощи линейных неравенств можно смоделировать производственные процессы и найти наиболее выгодные планы производства, транспортировки, размещения ресурсов и т. д.

В данной работе будут изложены основные методы решения линейных неравенств, применительно к конкретным задачам.

Графический метод

Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X 2 за абсциссу, а X 1 за ординату и записать неравенства в следующем виде:

Так как и графики и область допустимых решении находятся в первой четверти.

Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).

Как видно из иллюстрации многогранник ABCDE образует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max ( f )=+ ∞, либо min ( f )= -∞.

Теперь можно перейти к непосредственному нахождению максимума функции f .

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что

f ( C )= f (4;1)=19 – максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f = a . При монотонном увеличении числа a от -∞ до +∞ прямые f = a смещаются по вектору нормали 1 . Если при таком перемещении линии уровня существует некоторая точка X – первая общая точка области допустимых решений (многогранник ABCDE ) и линии уровня, то f ( X )- минимум f на множестве ABCDE . Если X — последняя точка пересечения линии уровня и множества ABCDE то f ( X )- максимум на множестве допустимых решений. Если при а→-∞ прямая f = a пересекает множество допустимых решений, то min ( f )= -∞. Если это происходит при а→+∞, то

В нашем примере прямая f = a пересевает область ABCDE в точке С(4;1). Поскольку это последняя точка пересечения, max ( f )= f ( C )= f (4;1)=19.

Симплекс-метод

Реальные задачи линейного программирования содержат очень большое число ограничений и неизвестных и выполняются на ЭВМ. Симплекс-метод – наиболее общий алгоритм, использующийся для решения таких задач. Суть метода заключается в том, что после некоторого числа специальных симплекс- преобразований ЗЛП, приведенная к специальному виду, разрешается. Для того, чтобы продемонстрировать симплекс-метод в действии решим, с попутными комментариями следующую задачу:

Для того, чтобы приступить к решению ЗЛП симплекс методом, надо привести ЗЛП к специальному виду и заполнить симплекс таблицу.

Система (4) – естественные ограничения и в таблицу не вписываются. Уравнения (1), (2), (3) образуют область допустимых решений. Выражение (5) – целевая функция. Свободные члены в системе ограничений и области допустимых решений должны быть неотрицательны.

В данном примере X 3, X 4, X 5 – базисные неизвестные. Их надо выразить через свободные неизвестные и произвести их замену в целевой функции.

Теперь можно приступить к заполнению симплекс-таблицы:

ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РФ

Кафедра математики и финансовых приложений

Курсовая работа

«Методы решения систем линейных неравенств»

Выполнил студент группы МЭК 1-2

Чанкин Пётр Алексеевич

Профессор Александр Самуилович Солодовников

Графический метод.. 3

Метод искусственного базиса.. 8

Принцип двойственности.. 10

Список использованной литературы. 12

Отдельные свойства систем линейных неравенств рассматривались еще в первой половине 19 века в связи с некоторыми задачами аналитической механики. Систематическое же изучение систем линейных неравенств началось в самом конце 19 века, однако о теории линейных неравенств стало возможным говорить лишь в конце двадцатых годов 20 века, когда уже накопилось достаточное количество связанных с ними результатов.

Сейчас теория конечных систем линейных неравенств может рассматриваться как ветвь линейной алгебры, выросшая из неё при дополнительном требовании упорядоченности поля коэффициентов.

Линейные неравенства имеют особо важное значение для экономистов, т.к именно при помощи линейных неравенств можно смоделировать производственные процессы и найти наиболее выгодные планы производства, транспортировки, размещения ресурсов и т. д.

В данной работе будут изложены основные методы решения линейных неравенств, применительно к конкретным задачам.

Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

    На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:

Так как и графики и область допустимых решении находятся в первой четверти.

Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).

Как видно из иллюстрации многогранник ABCDEобразует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max(f)=+ ∞, либо min(f)= -∞.

    Теперь можно перейти к непосредственному нахождению максимума функции f.

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что

f(C)=f(4;1)=19 – максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа aот -∞ до +∞ прямые f=aсмещаются по вектору нормали[1] . Если при таком перемещении линии уровня существует некоторая точка X– первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X)- минимум fна множестве ABCDE. Если X- последняя точка пересечения линии уровня и множества ABCDE то f(X)- максимум на множестве допустимых решений. Если при а→-∞ прямая f=aпересекает множество допустимых решений, то min(f)= -∞. Если это происходит при а→+∞, то

В нашем примере прямая f=aпересевает область ABCDEв точке С(4;1). Поскольку это последняя точка пересечения, max(f)=f(C)=f(4;1)=19.

Реальные задачи линейного программирования содержат очень большое число ограничений и неизвестных и выполняются на ЭВМ. Симплекс-метод – наиболее общий алгоритм, использующийся для решения таких задач. Суть метода заключается в том, что после некоторого числа специальных симплекс- преобразований ЗЛП, приведенная к специальному виду, разрешается. Для того, чтобы продемонстрировать симплекс-метод в действии решим, с попутными комментариями следующую задачу:

    Для того, чтобы приступить к решению ЗЛП симплекс методом, надо привести ЗЛП к специальному виду и заполнить симплекс таблицу.

Система (4) – естественные ограничения и в таблицу не вписываются. Уравнения (1), (2), (3) образуют область допустимых решений. Выражение (5) – целевая функция. Свободные члены в системе ограничений и области допустимых решений должны быть неотрицательны.

В данном примере X3, X4, X5 – базисные неизвестные. Их надо выразить через свободные неизвестные и произвести их замену в целевой функции.

Теперь можно приступить к заполнению симплекс-таблицы:

TOC o «1-3» h z u Вступление.. PAGEREF _Toc9087427 h 2

Графический метод.. PAGEREF _Toc9087428 h 3

Симплекс-метод.. PAGEREF _Toc9087429 h 6

Метод искусственного базиса.. PAGEREF _Toc9087430 h 8

Принцип двойственности.. PAGEREF _Toc9087431 h 10

Список использованной литературы. PAGEREF _Toc9087432 h 12

Отдельные свойства систем линейных неравенств рассматривались еще в первой половине 19 века в связи с некоторыми задачами аналитической механики. Систематическое же изучение систем линейных неравенств началось в самом конце 19 века, однако о теории линейных неравенств стало возможным говорить лишь в конце двадцатых годов 20 века, когда уже накопилось достаточное количество связанных с ними результатов.

Сейчас теория конечных систем линейных неравенств может рассматриваться как ветвь линейной алгебры, выросшая из неё при дополнительном требовании упорядоченности поля коэффициентов.

Линейные неравенства имеют особо важное значение для экономистов, т.к именно при помощи линейных неравенств можно смоделировать производственные процессы и найти наиболее выгодные планы производства, транспортировки, размещения ресурсов и т. д.

В данной работе будут изложены основные методы решения линейных неравенств, применительно к конкретным задачам.

Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.

В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.

Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:

  1. На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:

Так как и графики и область допустимых решении находятся в первой четверти.

Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).

Как видно из иллюстрации многогранник ABCDE образует область допустимых решений.

Если область допустимых решений не является замкнутой, то либо max(f)=+ ∞, либо min(f)= -∞.

  1. Теперь можно перейти к непосредственному нахождению максимума функции f.

Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что

f(C)=f(4;1)=19 – максимум функции.

Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.

В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа a от -∞ до +∞ прямые f=a смещаются по вектору нормали[1]. Если при таком перемещении линии уровня существует некоторая точка X – первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X)- минимум f на множестве ABCDE. Если X- последняя точка пересечения линии уровня и множества ABCDE то f(X)- максимум на множестве допустимых решений. Если при а→-∞ прямая f=a пересекает множество допустимых решений, то min(f)= -∞. Если это происходит при а→+∞, то

В нашем примере прямая f=a пересевает область ABCDE в точке С(4;1). Поскольку это последняя точка пересечения, max(f)=f(C)=f(4;1)=19.

Реальные задачи линейного программирования содержат очень большое число ограничений и неизвестных и выполняются на ЭВМ. Симплекс-метод – наиболее общий алгоритм, использующийся для решения таких задач. Суть метода заключается в том, что после некоторого числа специальных симплекс- преобразований ЗЛП, приведенная к специальному виду, разрешается. Для того, чтобы продемонстрировать симплекс-метод в действии решим, с попутными комментариями следующую задачу:

  1. Для того, чтобы приступить к решению ЗЛП симплекс методом, надо привести ЗЛП к специальному виду и заполнить симплекс таблицу.

Система (4) – естественные ограничения и в таблицу не вписываются. Уравнения (1), (2), (3) образуют область допустимых решений. Выражение (5) – целевая функция. Свободные члены в системе ограничений и области допустимых решений должны быть неотрицательны.

В данном примере X3, X4, X5 – базисные неизвестные. Их надо выразить через свободные неизвестные и произвести их замену в целевой функции.

Теперь можно приступить к заполнению симплекс-таблицы:


Статьи по теме